1 research outputs found

    BLA2C2: Design of a Novel Blockchain-based Light-Weight Authentication & Access Control Layer for Cloud Deployments

    Get PDF
    Cloud deployments are consistently under attack, from both internal and external adversaries. These attacks include, but are not limited to brute force, masquerading, improper access, session hijacking, cross site scripting (XSS), etc. To mitigate these attacks, a wide variety of authentication & access control models are proposed by researchers, and each of them vary in terms of their internal implementation characteristics. It was observed that these models are either highly complex, or lack in terms of security under multiple attacks, which limits their applicability for real-time deployments. Moreover, some of these models are not flexible and cannot be deployed under dynamic cloud scenarios (like constant reconfigurations of Virtual Machines, dynamic authentication use-cases, etc.). To overcome these issues, this text proposes design of a novel blockchain-based Light-weight authentication & access control layer that can be used for dynamic cloud deployments. The proposed model initially applies a header-level light-weight sanitization layer that removes Cross Site Scripting, SQL Injection, and other data-level attacks. This is followed by a light-weight authentication layer, that assists in improving login-level security for external attacks. The authentication layer uses IP matching with reverse geolocation mapping in order to estimate outlier login attempts. This layer is cascaded with an efficient blockchain-based access control model, which assists in mitigating session hijacking, masquerading, sybil and other control-level attacks. The blockchain model is developed via integration of Grey Wolf Optimization (GWO) to reduce unnecessary complexities, and provides faster response when compared with existing blockchain-based security deployments. Efficiency of the model was estimated in terms of accuracy of detection for different attack types, delay needed for detection of these attacks, and computational complexity during attack mitigation operations. This performance was compared with existing models, and it was observed that the proposed model showcases 8.3% higher accuracy, with 10.5% lower delay, and 5.9% lower complexity w.r.t. standard blockchain-based & other security models. Due to these enhancements, the proposed model was capable of deployment for a wide variety of large-scale scenarios
    corecore